T.C.

GEBZE TECHNICAL UNIVERSITY PHYSICS DEPARTMENT OPTICS LABORATORY EXPERIMENT REPORT DIFFRACTION IN A SINGLE SLIT

Name:	
Department:	
Partners:	

DATA and RESULTS

TA:_____

a; width of the slit	0.1(mm)	0.2(mm $)$	0.4(mm $)$
L; distance between slit and screen(m)			
\overline{y} ; Average distance between from center to minima			
$a_{exp} = \frac{m \ \lambda \ L}{\overline{y}}$			
(P.E. of a) $= \% \frac{ a_{exp} - a }{a} \times 100$			

- 1. Plot diffraction intensity vs position **x** for each of the specimens.
- 2. By using graph, find minima, record your value in Table ??
- 3. Calculate experimental width of each slit, calculate percentage error, record your value in Table above.

4. How does the slit width a affect the diffraction pattern?

x(mm)	I(mA)	x(mm)	I(mA)	x(mm)	I(mA)	x(mm)	I(mA)	x(mm)	I(mA)	x(mm)	I(mA)
0		15.5		0		15.5		0		15.5	
0.5		16		0.5		16		0.5		16	
1		16.5		1		16.5		1		16.5	
1.5		17		1.5		17		1.5		17	
2		17.5		2		17.5		2		17.5	
2.5		18		2.5		18		2.5		18	
3		18.5		3		18.5		3		18.5	
3.5		19		3.5		19		3.5		19	
4		19.5		4		19.5		4		19.5	
4.5		20		4.5		20		4.5		20	
5		20.5		5		20.5		5		20.5	
5.5		21		5.5		21		5.5		21	
6		21.5		6		21.5		6		21.5	
6.5		22		6.5		22		6.5		22	
7		22.5		7		22.5		7		22.5	
7.5		23		7.5		23		7.5		23	
8		23.5		8		23.5		8		23.5	
8.5		24		8.5		24		8.5		24	
9		24.5		9		24.5		9		24.5	
9.5		25		9.5		25		9.5		25	
10		25.5		10		25.5		10		25.5	
10.5		26		10.5		26		10.5		26	
11		26.5		11		26.5		11		26.5	
11.5		27		11.5		27		11.5		27	
12		27.5		12		27.5		12		27.5	
12.5		28		12.5		28		12.5		28	
13		28.5		13		28.5		13		28.5	
13.5		29		13.5		29		13.5		29	
14		29.5		14		29.5		14		29.5	
14.5		30		14.5		30		14.5		30	
15		30.5		15		30.5		15		30.5	

Table 4: for slit with width \mathbf{b}_1 = 0.1 mm, 0.2mm, 0.4mm

DISCUSSION & CONCLUSION

- 1. What are the possible errors in the experiment?
- 2. What kind of approximations did you take into consideration while you were obtaining the physical quantities and how do they affect your results?
- 3. What discrepancies did you encounter between the calculated quantities and theoretical or literature values?
- 4. What is your overall conclusion?